Abstract

An unsupervised learning algorithm is presented for segmentation and evaluation of motion data from the on-body Orient wireless motion capture system for mobile gait analysis. The algorithm is model-free and operates on the latent space of the motion, by first aggregating all the sensor data into a single vector, and then modeling them on a low-dimensional manifold to perform segmentation. The proposed approach is contrasted to a basic, model-based algorithm, which operates directly on the joint angles computed by the Orient sensor devices. The latent space algorithm is shown to be capable of retrieving qualitative features of the motion even in the face of noisy or incomplete sensor readings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.