Abstract
Many different biased regression techniques have been proposed for estimating parameters of a multiple linear regression model when the predictor variables are collinear. One particular alternative, latent root regression analysis, is a technique based on analyzing the latent roots and latent vectors of the correlation matrix of both the response and the predictor variables. It is the purpose of this paper to review the latent root regression estimator and to re-examine some of its properties and applications. It is shown that the latent root estimator is a member of a wider class of estimators for linear models
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.