Abstract
The risk perception of contracting COVID-19 is an important topic for assessing and predicting COVID-19 infection and health education during the pandemic. However, studies that use latent profiles and network analysis together to measure the risk perception of COVID-19 are rare. Therefore, this study combined latent profile analysis and network analysis to measure risk perception toward COVID-19 among Chinese university students through a cross-sectional and longitudinal study. A sample of 1,837 Chinese university students (735 males, 40%) completed the cross-sectional study with an eight-item risk perception questionnaire in January 2020, while 334 Chinese university students (111 males, 33.2%) completed the longitudinal study at three time points. A two-class model including a low risk perception class (n = 1,005, 54.7%) and a high risk perception class (n = 832, 45.3%) was selected for the cross-sectional study. Nodes rp6 ("Average people have chances of contracting COVID-19'') and rp7 ("Average people worry about catching COVID-19") had the strongest edge intensity (r = 0.491), while node rp5 ("The COVID-19 outbreak affects the whole country") had the highest strength centrality in the cross-sectional study. The risk perception of contracting COVID-19 decreased continuously at the three time points. Moreover, the network structures and global strengths had no significant differences in the longitudinal study. The risk perception of contracting COVID-19 decreased continually during the COVID-19 pandemic, which indicated the importance of cultural influence and effective government management in China. In addition, university students displayed strong trust and confidence in the government's ability to fight COVID-19. The results indicate that the government should take strong measures to prevent and intervene in various risks and reinforce the public's trust through positive media communications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.