Abstract

ABSTRACT This paper explores the implementation of Latent Low-Rank Representation (LatLRR) on pulsed thermographic data. LatLRR decomposes an image in the form of a linear association of three types of information: observed, unobserved and noise. This information is then used in order to separate the salient and principal features. This study has found that when used as a post-processing method prior to the application of state-of-the-art signal processing techniques, such as principal component thermography (PCT) and pulsed phase thermography (PPT), LatLRR significantly improves defect detection: 18% for PCT and 92% for PPT. Nevertheless, no noticeable improvement was measured when LatLRR was used to reconstruct a noiseless version of each image of a dataset, before processing it with a state-of-the-art algorithm. The investigations conducted on each type of feature returned by the LatLRR have also failed to provide results regarding the detection of defects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call