Abstract

Basic features and mechanism of femtosecond laser graphitization of diamond surface were studied in the two regimes of irradiation: (1) by an intensive (>10 J/cm2) single shot and (2) by a train of pulses with near-threshold intensity (~1–10 J/cm2). Special attention was paid to the so-called accumulative regime, when multipulse laser treatment results in prolonged delay of an appearance of crystal modification of the crystal. The light absorption mechanisms dominating in each regime are discussed. The experiments with fundamental (800 nm), second (400 nm) and third (266 nm) harmonics of Ti–sapphire laser (100 fs) have revealed that thermally stimulated processes play an essential role in latent diamond graphitization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.