Abstract

A new phenomenological latent hardening model is developed for rate-dependent single crystal plasticity. The model quantitatively predicts the latent hardening evolution and latent hardening material dependence for f.c.c. single crystals. Increased overshoot, typically observed in copper alloys as opposed to copper, is rationalized based on the history dependence of latent hardening.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.