Abstract
This work focuses on the insensitivity of existing word alignment models to domain differences, which often yields suboptimal results on large heterogeneous data. A novel latent domain word alignment model is proposed, which induces domain-conditioned lexical and alignment statistics. We propose to train the model on a heterogeneous corpus under partial supervision, using a small number of seed samples from different domains. The seed samples allow estimating sharper, domain-conditioned word alignment statistics for sentence pairs. Our experiments show that the derived domain-conditioned statistics, once combined together, produce notable improvements both in word alignment accuracy and in translation accuracy of their resulting SMT systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.