Abstract
BackgroundThis study sought to identify multimorbidity patterns and determine the association between these latent classes with several outcomes, including health, functioning, disability, quality of life and use of services, at baseline and after 3 years of follow-up.MethodsWe analyzed data from a representative Spanish cohort of 3541 non-institutionalized people aged 50 years old and over. Measures were taken at baseline and after 3 years of follow-up. Latent Class Analysis (LCA) was conducted using eleven common chronic conditions. Generalized linear models were conducted to determine the adjusted association of multimorbidity latent classes with several outcomes.Results63.8% of participants were assigned to the “healthy” class, with minimum disease, 30% were classified under the “metabolic/stroke” class and 6% were assigned to the “cardiorespiratory/mental/arthritis” class. Significant cross-sectional associations were found between membership of both multimorbidity classes and poorer memory, quality of life, greater burden and more use of services. After 3 years of follow-up, the “metabolic/stroke” class was a significant predictor of lower levels of verbal fluency while the two multimorbidity classes predicted poor quality of life, problems in independent living, higher risk of hospitalization and greater use of health services.ConclusionsCommon chronic conditions in older people cluster together in broad categories. These broad clusters are qualitatively distinct and are important predictors of several health and functioning outcomes. Future studies are needed to understand underlying mechanisms and common risk factors for patterns of multimorbidity and to propose more effective treatments.
Highlights
This study sought to identify multimorbidity patterns and determine the association between these latent classes with several outcomes, including health, functioning, disability, quality of life and use of services, at baseline and after 3 years of follow-up
The aim of this study was to investigate whether eleven common chronic conditions cluster together in a Spanish representative sample of people aged 50 and older according to their pattern of co-occurrence
There was an important drop in the adjusted Bayesian Information Criterion (BIC) and consistent Akaike Information Criterion (CAIC) values from the 2-class to the three-class model
Summary
This study sought to identify multimorbidity patterns and determine the association between these latent classes with several outcomes, including health, functioning, disability, quality of life and use of services, at baseline and after 3 years of follow-up. Asthma and chronic obstructive pulmonary disease (COPD), are especially prevalent and associated with poor levels of quality of life and high disability [4]. These approaches might not adequately capture larger clusters of conditions linked to greater burden. The co-occurrence of chronic conditions has been addressed with cluster analysis methods as they can help to identify broad comorbidity patterns
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.