Abstract

Synthesis and curing activity of latent ring-opening metathesis polymerization (ROMP)-based catalytic systems are reported using polydicyclopentadiene (pDCPD) as a model system. Differential scanning calorimetry (DSC) is used to monitor the ROMP reactions and to characterize the cured networks. These systems are either slow or completely inactive at ambient temperatures, yet at high temperatures the superior curing activity of other ROMP catalysts are retained. The resulting thermosets show glass transition temperatures from 10 to 25 °C higher than when cured with other ROMP catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.