Abstract
Although many clustering procedures aim to construct an optimal partition of objects or, sometimes, variables, there are other methods, called block clustering methods, which simultaneously consider the two sets and organize the data into homogeneous blocks. This kind of method has practical importance in a wide variety of applications such as text and market basket data analysis. Typically, the data that arise in these applications are arranged as a two-way contingency table. Using Poisson distributions, a latent block model for these data is proposed and, setting it under the maximum likelihood approach and the classification maximum likelihood approach, various algorithms are provided. Their performances are evaluated and compared to a simple use of EM or CEM applied separately on the rows and columns of the contingency table.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.