Abstract
Load balancers choose among load-balanced paths to distribute traffic as if it makes no difference using one path or another. This work shows that the latency difference between load-balanced paths (called latency imbalance), previously deemed insignificant, is now prevalent from the perspective of the cloud and affects various latency-sensitive applications. In this work, we present the first large-scale measurement study of latency imbalance from a cloud-centric view. Using public cloud around the globe, we measure latency imbalance both between data centers (DCs) in the cloud and from the cloud to the public Internet. Our key findings include that 1) Amazon's and Alibaba's clouds together have latency difference between load-balanced paths larger than 20ms to 21% of public IPv4 addresses; 2) Google's secret in having lower latency imbalance than other clouds is to use its own well-balanced private WANs to transit traffic close to the destinations and that 3) latency imbalance is also prevalent between DCs in the cloud, where 8 pairs of DCs are found to have load-balanced paths with latency difference larger than 40ms. We further evaluate the impact of latency imbalance on three applications (i.e., NTP, delay-based geolocation and VoIP) and propose potential solutions to improve application performance. Our experiments show that all three applications can benefit from considering latency imbalance, where the accuracy of delay-based geolocation can be greatly improved by simply changing how ping measures the minimum path latency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.