Abstract
The synthesis and reactions of late-transition-metal oxo and imido complexes was explored. The deprotonation of platinum(II) hydroxo complexes yielded new oxo complexes. Attempted deprotonation of Cp*Rh(III) hydroxo complexes did not give oxo complexes but complex mixtures probably resulting from reduction of the Rh(III) center. The reaction of Na/Hg with (Cp*RhCl{sub 2}){sub 2} gave the very reactive Rh(II) dimer, (Cp*RhCl){sub 2}. Rhodium(I) imido complexes with the bis(dimethylphosphino)methane ligand were prepared and found to be similar to the previously prepared bis(diphenylphosphino)methane complexes. Attempts to prepare bis(diphenylphosphino)methylamine, bis(diphenylphosphino)phenylamine, PMe{sub e} and NO{sup +} analogues were not successful. Attempts to prepare Cp*Rh(III) imido complexes resulted in amido complexes and reduction. Rhodium (III) tris(3.5-dimethylpyrazoyl)borate analogues are reduction resistant but have not yet yielded imido complexes. The first imido complexes of Au were prepared by treating a Au oxo complex with amines or isocyanates. Dimeric Cp*Rh dioxygen and nitrosobenzene complexes were prepared by insertion into the Rh-Rh bond of (Cp*RhCl){sub 2}. The dioxygen complex activates a C-H bond of the Cp* ligand on treatment with PMe{sub 3}. Imido and oxo complexes nitrene and oxygen atom transfer product in reactions with CO. A novel electrophilic ring addition was observed with sterically protected aryl imido complexes. 15 refs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.