Abstract

ABSTRACT The bright, blue, rapidly evolving AT 2018cow is a well-studied peculiar extragalactic transient. Despite an abundance of multiwavelength data, there still is no consensus on the nature of the event. We present our analysis of three epochs of Hubble Space Telescope (HST) observations spanning the period from 713 to 1474 d post-burst, paying particular attention to uncertainties of the transient photometry introduced by the complex background in which AT 2018cow resides. Photometric measurements show evident fading in the UV and more subtle but significant fading in the optical. During the last HST observation, the transient’s optical/UV colours were still bluer than those of the substantial population of compact, young, star-forming regions in the host of AT 2018cow, suggesting some continued transient contribution to the light. However, a compact source underlying the transient would substantially modify the resulting spectral energy distribution, depending on its contribution in the various bands. In particular, in the optical filters, the complex, diffuse background poses a problem for precise photometry. An underlying cluster is expected for a supernova occurring within a young stellar environment or a tidal-disruption event (TDE) within a dense older one. While many recent works have focused on the supernova interpretation, we note the substantial similarity in UV light-curve morphology between AT 2018cow and several tidal disruption events around supermassive black holes. Assuming AT 2018cow arises from a TDE-like event, we fit the late-time emission with a disc model and find MBH = 103.2 ± 0.8 M⊙. Further observations are necessary to determine the late-time evolution of the transient and its immediate environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.