Abstract
We study analytically the asymptotic late-time evolution of realistic rotating collapse. This is done by considering the asymptotic late-time solutions of Teukolsky's master equation, which governs the evolution of gravitational, electromagnetic, neutrino and scalar perturbations fields on Kerr spacetimes. In accordance with the no-hair conjecture for rotating black-holes we show that the asymptotic solutions develop inverse power-law tails at the asymptotic regions of timelike infinity, null infinity and along the black-hole outer horizon (where the power-law behaviour is multiplied by an oscillatory term caused by the dragging of reference frames). The damping exponents characterizing the asymptotic solutions at timelike infinity and along the black-hole outer horizon are independent of the spin parameter of the fields. However, the damping exponents at future null infinity are spin dependent. The late-time tails at all the three asymptotic regions are spatially dependent on the spin parameter of the field. The rotational dragging of reference frames, caused by the rotation of the black-hole (or star) leads to an active coupling of different multipoles.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.