Abstract

Unlike its other halogen atom siblings, chlorination of a bioactive compound can change its physiological characteristics, improve its pharmacological profile, and function as a point of diversification through cross-coupling reactions. As a result, it has been a crucial strategy for drug discovery and development. However, functional groups such as amines, amides, hydroxy groups, or carboxylic acids trap the Cl+ , severely limiting the reactivity and making direct chlorination far too difficult to be practical. Herein, we introduce a nucleophilic sulfonohydrazide catalyst for late-stage halogenation of peptides and drugs. This direct, mild and metal-free protocol shows high functional-group tolerance and is compatible with a range of structurally diverse peptides, drugs and aromatic compounds. Furthermore, DFT studies indicate that the reaction most likely proceeds via a cationic transition state. The gram-scale synthesis, high stability and efficiency of the catalyst provide a facile route for late-stage functionalization and intermediates for further derivatization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call