Abstract

Abstract The Walker Lane is a broad shear zone that accommodates a significant portion of North American–Pacific plate relative transform motion through a complex of fault systems and block rotations. Analysis of digital elevation models, constructed from both lidar data and structure-from-motion modeling of unmanned aerial vehicle photography, in conjunction with 10Be and 36Cl cosmogenic and optically stimulated luminescence dating define new Late Pleistocene to Holocene minimum strike-slip rates for the Benton Springs (1.5 ± 0.2 mm/yr), Petrified Springs (0.7 ± 0.1 mm/yr), Gumdrop Hills (0.9 +0.3/−0.2 mm/yr), and Indian Head (0.8 ± 0.1 mm/yr) faults of the central Walker Lane (Nevada, USA). Regional mapping of the fault traces within Quaternary deposits further show that the Indian Head and southern Benton Springs faults have had multiple Holocene ruptures, with inferred coseismic displacements of ∼3 m, while absence of displaced Holocene deposits along the Agai Pah, Gumdrop Hills, northern Benton Springs, and Petrified Springs faults suggest they have not. Combining these observations and comparing them with geodetic estimates of deformation across the central Walker Lane, indicates that at least one-third of the ∼8 mm/yr geodetic deformation budget has been focused across strike-slip faults, accommodated by only two of the five faults discussed here, during the Holocene, and possibly half from all the strike-slip faults during the Late Pleistocene. These results indicate secular variations of slip distribution and irregular recurrence intervals amongst the system of strike-slip faults. This makes the geodetic assessment of fault slip rates and return times of earthquakes on closely spaced strike-slip fault systems challenging. Moreover, it highlights the importance of understanding temporal variations of slip distribution within fault systems when comparing geologic and geodetic rates. Finally, the study provides examples of the importance and value in using observations of soil development in assessing the veracity of surface exposure ages determined with terrestrial cosmogenic nuclide analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call