Abstract

The late Quaternary activity of Yushu segment is poorly understood compared with other segments within Ganzi–Yushu Fault system. We focused on the Batang Fault, a major branch fault of the Yushu segment. Interpretation of remote sensing images and field investigations reveals that this fault has a clear geomorphic expression which is characterized by prominent fault escarpment and systematically offset gullies, fluvial terraces and alluvial fans along strike. Morphotectonic mapping, combined with optically stimulated luminescence (OSL) and radiocarbon (14C) data, suggest that the Batang Fault is a late Holocene active left-lateral strike-slip fault, along with some reverse component. The average left-lateral slip rate of this fault is 2–4mm/yr and vertical slip rate is 0.2–0.6mm/yr since Late Pleistocene. Comparison with the slip rates of other faults within the Ganzi–Yushu Fault system demonstrates that the Batang Fault partitioned nearly a third of the strike slip deformation within Yushu segment. This study provides insights into the reasons why the Yushu Fault is relatively less active when compared with other segments within Ganzi–Yushu Fault system and is crucial to the seismic hazard assessment in Yushu area especially after the occurrence of 2010 Ms 7.1 Yushu earthquake.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.