Abstract

This work investigated the evolution of sedimentary environments during the latest Quaternary and their influence on the paradoxical occurrence of open vegetation patches in sharp contact with the Amazonian forest. The approach integrated pre-existing geological and floristic data from lowlands in the Brazilian Amazonia, with remote sensing imagery including multispectral optical images (TM, ETM+, and ASTER), Phased Array L-band Synthetic Aperture Radar (PALSAR), InSAR C-band SRTM-DEMs, and high resolution images obtained from Google Earth™. The detection of an abundance of paleomorphologies provided evidence of a scenario in which constant environmental shifts were linked to the evolution of fluvial and megafan depositional systems. In all studied areas, the open vegetation patches are not random, but associated with sedimentary deposits representative of environments either deactivated during the Holocene or presently in the process of deactivation. Sedimentary evolution would have determined the distribution of wetlands and terra firme in many areas of the Amazonian lowlands, and would have a major impact on the development of open vegetated patches within the modern rainforest. Subsiding areas were filled up with megafan deposits, and many fluvial tributaries were rearranged on the landscape. The close relationship between vegetation and the physical environment suggests that sedimentary history related to the evolution of depositional settings during the latest Quaternary played a major role in the distribution of flooded and non-flooded areas of the Amazonian lowlands, with a direct impact on the distribution of modern floristic patterns. As the depositional sites were abandoned and their sedimentary deposits were exposed to the surface, they became sites suitable for vegetation growth, first of herbaceous species and then of forest. Although climate fluctuations might have been involved, fault reactivation appears to have been the main cause of changes in depositional dynamics through time, a process that had an immediate effect on the development of large open vegetation patches intermingled with the Amazonian rainforest.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call