Abstract

Abstract Recent chronostratigraphic evidence suggests that the central Australian Great Barrier Reef formed within the past 780 k.y. Periplatform sediments of the same age recovered from the western Coral Sea record a progressive decrease in the δ18O of planktonic foraminifera to the present. Several investigators have proposed that this trend represents an appreciable late Pleistocene warming (∼4 °C) of ocean surface temperatures, which they posit catalyzed the growth of the Great Barrier Reef. Contrary to this hypothesis, we demonstrate using alkenone paleothermometry (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(U_{37}^{k{^\prime}}\) \end{document}) on sediments from Ocean Drilling Program (ODP) Site 820 that sea-surface temperatures (SSTs) in the western Coral Sea changed by ∼1.5 °C or less during the past ∼800 k.y. If the central Great Barrier Reef rose in the late Quaternary, it was therefore not due to a warming of SSTs. We explore whether a major moisture balance change and/or diagenetic alteration of calcareous microfossils can explain the higher δ18O values observed at depth in the planktonic δ18O record at ODP Site 820. Our results suggest that diagenesis provides a large isotopic overprint.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.