Abstract

Two piston cores (DD09-ST21, DD09-ST39B) from the northeastern Ulleung Basin in the East Sea were obtained to investigate variations in the biogenic components (calcium carbonate, organic carbon) and biogeochemical processes (δ13C and δ15N). The two cores had distinctive characteristics in terms of surface production, preservation and dissolution capacity of carbonate, and redox conditions of bottom-water. Core DD09-ST21 was characterized by an oxygen-depleted condition from 15 ka (MIS 2) to 60 ka (MIS 3). Core DD09-ST39B, on the other hand, showed oxic bottom-water conditions, possibly due to shallow water depth. These two cores with different redox condition showed opposite trends in terms of CaCO3, TOC, and C37 alkenone concentrations. CaCO3 and C37 concentrations were higher during the LGM in DD09-ST21 while lower contents were observed in DD09-ST39B in the same period. Moreover, consistently low TOC in DD09-ST39B and higher fluctuation of organic matters in DD09-ST21 may suggest difference in primary productivity, preservation capacity, or a potential dissolution effect. During the Holocene, the surface productivity of both cores increased, probably due to renewed ventilation and vertical mixing in the East Sea. Therefore, this study suggests spatial variation in production and preservation of biogenic components in the two cores since last 50 ka for DD09-ST39B and 80 ka for DD09-ST21 due to difference in environmental conditions such as water depth, bottom-water conditions, surface productivity and preservation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call