Abstract

Isostatic response of the Earth to changes in Quaternary Times of ice and water loads is partly elastic, and partly involves viscous mantle flow. The relaxation spectrum of the Earth, critical for estimation of the mantle flow component, is estimated from published determinations of Fennoscandian and Laurentide rebound, and of the nontidal acceleration of the Earth's rotation. The spectrum is consistent with an asthenosphere viscosity around 10 21P, and a viscosity around 10 23P below 400 km depth. Calculation of relaxation effects is done by convoluting the load history with the response function in spherical harmonics for global effects, and in rectangular or cylindrical transforms for smaller regional effects. Broad-scale deformation of the globe, resulting from the last deglaciation and sea level rise, is calculated to have involved an average depression of ocean basins of about 8 m, and mean upward movement of continents of about 16 m, relative to the center of the Earth, in the last 7000 yr. Deflection in the ocean margin “hinge zone” varies with continental shelf geometry and rigidity of the underlying lithosphere: predictions are made for different model cases. The computational methods is checked by predicting Fennoscandian and Laurentide postglacial warping, from published estimates of icecap histories, with good results. The depth variations of shorelines formed around 17,000 BP (e.g., North America, 90–130 m; Australia, 130–170 m), are largely explainable in terms of combined elastic and relaxation isostasy. Differences between Holocene eustatic records from oceanic islands (Micronesia, Bermuda), and continental coasts (eastern North America, Australia), are largely but not entirely explained in the same terms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call