Abstract

We measured meteoric 10Be variation throughout a marine sediment core from the Larsen B embayment (LBE) of the Antarctic Peninsula, and collected in situ 10Be and 14C exposure ages on terrestrial glacial deposits from the northern and southern margins of the LBE. We use these data to reconstruct Last Glacial Maximum (LGM) to present deglaciation and ice shelf change in the LBE. Core sedimentary facies and meteoric 10Be data show a monotonic progression from subglacial deposits to sub-ice-shelf deposits to open-marine conditions, indicating that its collapse in 2002 was unprecedented since the LGM. Exposure-age data from the southern LBE indicate 40 m of ice surface lowering between 14 and 6 ka, then little change between 6 ka and the 2002 collapse. Exposure-age data from the northern LBE show a bimodal distribution in which clusters of apparent exposure ages in the ranges 4.9–5.1 ka and 1.0–2.0 ka coexist near 50 m elevation. Based on these results, other published terrestrial and marine deglaciation ages, and a compilation of sea bed imagery, we suggest a north-to-south progression of deglaciation in the northeast Antarctic Peninsula in response to Holocene atmospheric and oceanic warming. We argue that local topography and ice configuration inherited from the LGM, in addition to climate change, are important in controlling the deglaciation history in this region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.