Abstract

Twelve new sites on Kaua‘i provide an island-wide view of late Quaternary (near time) environments on the oldest of the major Hawaiian Islands. Radiocarbon-dated lithologies are compared for estuarine sites on windward and leeward coasts, interior peat bogs ranging from 169 to 1220 m in elevation, prehistoric fishponds, and a sinkhole paleolake in the Maha‘ulepu cave system. Terrestrial sedimentation begins in many coastal sites about 6000 cal BP, as sea level approached modern levels. Prehuman sedimentation rates were quite low in all these sites, generally <2 mm/yr, although coastal sites in the late Holocene were subject to major episodic sediment influx from extreme events, including tsunamis, hurricanes, and floods. Interior sites are generally older, having accumulated humic clay and peat layers at least since the late Pleistocene. Since the arrival of humans less than two millennia ago, sedimentation rates have increased in some coastal sites, and further local increases (as much as two orders of magnitude) have occurred since European arrival. Evidence from sites containing fossils of extinct terrestrial snails is consistent with the hypothesis that human-caused extinctions have proceeded in three phases, corresponding to losses (generally the largest species) occurring soon after the arrival of the first humans, followed by a second wave of extinction in late prehistoric times, and a third after European colonization. Dating of sediments from fishponds constructed or enhanced by prehistoric Polynesians suggests that this early form of aquaculture was initiated on Kaua‘i by about 830 ± 50 BP. The most elaborate example of fishpond construction in the Hawaiian Islands, the Alekoko or Menehune fishpond on Kaua‘i's southeast coast, was probably undertaken by 580 ± 30 BP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.