Abstract

About 2000 active faults are known to exist within the land area of Japan. Most of these active faults have deformed the topographic surfaces which were formed in the late Quaternary, including fluvial terraces; and the formative ages of these terraces are estimated mainly by tephrochronology. Fluvial terraces in the eastern Hokuriku region, comprising the Toyama, Tonami, and Kanazawa Plains, northern central Japan, are widely distributed and have been deformed by reverse active faults. The formative age of terraces in this area has not been reported, as volcanic ash deposits are rarely visible within terrace deposits and the overlying loamy soil, and outcrops of fluvial terraces are quite scarce in this area. In the present study, we carried out a drilling survey on these terraces to obtain samples of the overlying loamy soil and upper part of terrace deposits. From these samples, we extracted some well-known widespread volcanic ash, from which we were able to estimate the approximate age of the terraces and the vertical slip rate of the active faults. Late Quaternary fluvial terraces in eastern Hokuriku are divided into 12 levels: Terraces 1 to 12 in descending order. Widespread tephras such as the Kikai-Tozurahara Tephra (K-Tz: 95 ka) are contained in the lowest part of the loamy soil in Terrace 4 and the Daisen-Kurayoshi Pumice (DKP: 55 ka) is present in the lowest part of the loamy soil in Terrace 6. From the ages and the vertical displacements of the fluvial terraces, the late Quaternary average vertical slip rates of active faults in eastern Hokuriku are estimated to be 0.2–0.9 mm/year (Uozu fault), 0.1–0.4 mm/year (Kurehayama fault), 0.1–0.3 mm/year (Takashozu fault), 0.1–0.4 mm/year (Hohrinji fault), and 0.5–0.8 mm/year (Morimoto-Togashi fault). We also estimated the recurrence interval of earthquakes related to active faults from displacement per event and ages of terraces and no significant difference in vertical displacement per single earthquake for different active faults, and recurrence intervals tend to be inversely proportional to vertical displacement rates. This study demonstrates that a combination of drilling of loamy soil and precise cryptotephra analysis of fluvial terraces can be used to estimate the formative age of the terraces and the average slip rate of active faults in areas where volcanic ash deposits are rare.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call