Abstract

The mechanical feasibility of normal-sense slip on low-angle faults remains a conundrum in extensional tectonics. The rarity of demonstrably active low-angle normal faults may imply that very specific criteria must be satisfied for significant fault displacement. We present new geologic observations, geomorphic mapping, and structural analysis for a low-angle fault zone along the eastern margin of Searles Valley, California. Our observations indicate that Pleistocene displacement along the range-front fault scarps is the near-surface expression of slip on a bedrock-rooted low-angle normal fault. Along the central portion of the range front in Searles Valley, high-angle faults offset late Pleistocene alluvial and lacustrine surfaces. These faults merge downward into a west-dipping, low-angle fault, but do not displace the low-angle surface. These geometric relations are satisfied only when displacement on the high-angle faults is accommodated by slip on the basal low-angle fault. We use displaced alluvial fan surfaces to determine slip rates across the fault system over late Pleistocene to Holocene time. Combining radiocarbon ages of lacustrine tufa deposits with high-precision topographic surveys of fault scarps yields average slip rates of 0.21–0.35 m/k.y. Additional mapping of faults within the Slate Range at the northern end of Searles Valley suggests that slip is transferred northward to the Manly Pass fault, a bedrock normal fault that trends northeast into Panamint Valley. Thus, although displacement along the range-front fault system dies out northward, we infer that active deformation occurs within the range and likely links extension in Searles Valley with deformation in Panamint Valley.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call