Abstract
Eight glaciers, covering an area of 1.63 km2, reside on the northern and northeastern slopes of the Goat Rocks tallest peaks in the Cascades of central Washington. At least three glacial stands occurred downstream from these glaciers. Closest to modern glacier termini are Little Ice Age (LIA) moraines that were deposited between 1870 and 1899 AD, according to the lichenometric analysis. They are characterized by sharp, minimally eroded crests, little to no soil cover, and minimal vegetation cover. Glacier reconstructions indicate that LIA glaciers covered 8.29 km2, 76% more area than modern ice coverage. The average LIA equilibrium line altitude (ELA) of 1995 ± 70 m is ~150 m below the average modern ELA of 2149 ± 76 m. To satisfy climate conditions at the LIA ELA, the winter snow accumulation must have been 8 to 43 cm greater and mean summer temperatures 0.2 to 1.3 ºC cooler than they are now. Late Pleistocene to early Holocene (LPEH) aged moraines are located between 100 and 400 m below the LIA deposits. They have degraded moraine crests, few surface boulders, and considerable vegetation and soil cover. Volcanic ashes indicate LPEH moraines were deposited before 1480 AD while morphometric data suggest deposition during the late Pleistocene or early Holocene. The average LPEH ELA of 1904 ± 110 m is ~ 240 m and ~90 m below the modern and LIA ELAs, respectively. The climate change necessary to maintain a glacier with an ELA at that elevation for LPEH conditions requires the winter accumulation to increase by 47 to 48 cm weq and the mean summer temperature to cool by 1.4 to 1.5 ºC. Last glacial maximum (LGM) moraines are located more than 30 km downstream from modern glacial termini. They are characterized by hummocky topography, rounded moraine crests, complete vegetation cover, and well developed soil cover. Moraine morphometry, soil characteristics, and distance from modern glacial termini indicate that deposition occurred at least 15 ka BP during an expansive cooling event, the last being the LGM. The LGM ELA of 1230 m is ~920 m below the modern ELA. The climate change necessary to maintain a glacier with an ELA at that elevation for LGM conditions requires the mean summer temperature to cool by 5.6 ºC with no change in precipitation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.