Abstract

Abstract Late Paleozoic large-scale transcurrent tectonics and synkinematic intrusions are prominent features in the Eastern Tianshan segment of the southwestern Central Asian Orogenic Belt. However, the spatial and temporal relationship between synkinematic intrusions and crustal-scale shear zones remains unclear. Here we report petrology, geochemistry, and geochronology of the Qiziltag pluton associated with the Kanggur-Huangshan Shear Zone (KHSZ) with a view to characterize the spatial and temporal relationship between synkinematic intrusions and large-scale transcurrent shearing. Field relations and zircon U-Pb ages indicate that the Qiziltag pluton was formed through two stages of magmatism, with earlier stage granitoids (gneissic biotite granite: 288.9 ± 1.9 Ma, biotite monzogranite: 291.5 ± 1.7 Ma, K-feldspar granite: 287.9 ± 3.1 Ma), and later stage bimodal intrusions (biotite quartz monzonite: 278.5 ± 1.8 Ma, gabbro: 278.1 ± 2.3 Ma). The earlier stage granitoids are high-K calc-alkaline, enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILEs; e.g., Rb, Th, and U), and depleted in high field strength elements (HFSEs; e.g., Nb, Ta, and Ti). Combined with their depleted isotopic compositions (εNd(t) = +6.29 to +7.48) and juvenile model ages (TDM2 = 450–610 Ma), we infer that the granitoids were derived from juvenile lower crust in a post-collisional tectonic transition (from compression to extension). The structural and temporal features indicate that the earlier stage (ca. 290 Ma) granitoids formed prior to the regional large-scale dextral strike slip. The later stage bimodal intrusions are dominated by biotite quartz monzonite as the felsic member and gabbro as the mafic component. The biotite quartz monzonite is high-K calc-alkaline with enriched LREEs and LILEs (e.g., Rb, Th, and U), and depleted HFSEs (e.g., Nb, Ta, and Ti), whereas the gabbro is subalkalic with depleted LREEs and HFSEs (e.g., Nb and Ta), resembling normal mid-ocean ridge basalt features. The bimodal intrusions show similar isotopic compositions (εNd(t) = +6.41 to +6.72 and εHf(t) = +9.55 to + 13.85 for biotite quartz monzonite; εNd(t) = +9.13 to +9.69 and εHf(t) = +4.80 to +14.07 for gabbro). These features suggest that the later stage (ca. 280 Ma) bimodal intrusions were derived from partial melting of depleted mantle and anatectic melting of lower crust materials induced by synchronous underplating of basaltic magma in a post-collisional extension. The structural features of the bimodal intrusions indicate that the later stage (ca. 280 Ma) magmatism was coeval with the development of the KHSZ. In conjunction with spatial and temporal evolution of magmatism and sedimentary records of Eastern Tianshan, we infer that transition between the northward closure of the North Tianshan Ocean and subsequent collision between the Central Tianshan Massif and the Qoltag Arc belt occurred at ca. 300 Ma.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call