Abstract

ABSTRACTNortheast (NE) China is characterized by large areas of Mesozoic and Paleozoic granitoids, whereas Cenozoic granitoids are scarce. This paper reports LA-ICP-MS zircon U–Pb ages and whole-rock geochemical data for late Paleocene–early Eocene granitoids from the Jiamusi Massif, NE China, in order to determine their petrogenesis and tectonic implications. Geochronological data indicate that the granodiorite and dioritic porphyry from the Wudingshan pluton formed at 51.5 ± 0.3 Ma and 56.3 ± 0.8 Ma, respectively. The biotite–quartz diorite, biotite granodiorite, and dioritic porphyry have high SiO2 (68.38–70.06 wt.%), Al2O3 (15.34–15.79 wt.%), and Na2O (3.96–4.49 wt.%) contents, low MgO contents (1.10–1.26 wt.%), A/CNK ratios of 0.99–1.11, and are classified as medium- to high-K calc-alkaline and weakly peraluminous I-type granitoids. They are enriched in LREEs and LILEs, and depleted in HFSEs, with Nb/Ta ratios of 10.4–15.0. Moreover, they have negative Nb–Ta–Ti anomalies, indicating that they were derived from continental crust. Combining with the previously published isotopic data and regional geological results, we suggest that the late Paleocene–early Eocene granitoids (56–52 Ma) were probably derived from partial melting of juvenile lower crust, and formed in an active continental margin setting, possibly related to subduction slab rollback of the Paleo-Pacific Plate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.