Abstract

BackgroundGroup I Paks are serine/threonine kinases that function as major effectors of the small GTPases Rac1 and Cdc42, and they regulate cytoskeletal dynamics, cell polarity, and transcription. We previously demonstrated that Pak1 and Pak2 function redundantly to promote skeletal myoblast differentiation during postnatal development and regeneration in mice. However, the roles of Pak1 and Pak2 in adult muscle homeostasis are unknown. Choline kinase β (Chk β) is important for adult muscle homeostasis, as autosomal recessive mutations in CHKβ are associated with two human muscle diseases, megaconial congenital muscular dystrophy and proximal myopathy with focal depletion of mitochondria.MethodsWe analyzed mice conditionally lacking Pak1 and Pak2 in the skeletal muscle lineage (double knockout (dKO) mice) over 1 year of age. Muscle integrity in dKO mice was assessed with histological stains, immunofluorescence, electron microscopy, and western blotting. Assays for mitochondrial respiratory complex function were performed, as was mass spectrometric quantification of products of choline kinase. Mice and cultured myoblasts deficient for choline kinase β (Chk β) were analyzed for Pak1/2 phosphorylation.ResultsdKO mice developed an age-related myopathy. By 10 months of age, dKO mouse muscles displayed centrally-nucleated myofibers, fibrosis, and signs of degeneration. Disease severity occurred in a rostrocaudal gradient, hindlimbs more strongly affected than forelimbs. A distinctive feature of this myopathy was elongated and branched intermyofibrillar (megaconial) mitochondria, accompanied by focal mitochondrial depletion in the central region of the fiber. dKO muscles showed reduced mitochondrial respiratory complex I and II activity. These phenotypes resemble those of rmd mice, which lack Chkβ and are a model for human diseases associated with CHKβ deficiency. Pak1/2 and Chkβ activities were not interdependent in mouse skeletal muscle, suggesting a more complex relationship in regulation of mitochondria and muscle homeostasis.ConclusionsConditional loss of Pak1 and Pak2 in mice resulted in an age-dependent myopathy with similarity to mice and humans with CHKβ deficiency. Protein kinases are major regulators of most biological processes but few have been implicated in muscle maintenance or disease. Pak1/Pak2 dKO mice offer new insights into these processes.

Highlights

  • Group I p21-activated kinase (Pak) are serine/threonine kinases that function as major effectors of the small GTPases Rac1 and Cdc42, and they regulate cytoskeletal dynamics, cell polarity, and transcription

  • Pak1+/−;Pak2f/f animals were used as the control genotype

  • Mice lacking group I Paks do not recover muscle mass with age We previously reported on mice lacking Pak1 and Pak2 conditionally in the skeletal muscle lineage [18]. double knockout (dKO) mice carry a germline mutation of Pak1 and a conditional mutation of a floxed Pak2 allele with the MyoDiCre driver, which is active beginning at the developmental myoblast stage [22,23,24]

Read more

Summary

Introduction

Group I Paks are serine/threonine kinases that function as major effectors of the small GTPases Rac and Cdc, and they regulate cytoskeletal dynamics, cell polarity, and transcription. The roles of Pak and Pak in adult muscle homeostasis are unknown. Choline kinase β (Chk β) is important for adult muscle homeostasis, as autosomal recessive mutations in CHKβ are associated with two human muscle diseases, megaconial congenital muscular dystrophy and proximal myopathy with focal depletion of mitochondria. In addition to its pivotal roles in movement, breathing, and temperature regulation, muscle is a highly metabolic tissue [1]. Homeostatic maintenance of individual myofibers and muscle tissue is a complex process that requires coordination of many intracellular signaling pathways and structural elements. Defects in such processes result in a variety of skeletal muscle diseases, including muscular dystrophies and congenital myopathies. Many congenital myopathies result from genetic defects in the contractile and structural proteins of muscle and are defined by distinctive ultrastructural changes or by defects in muscle metabolism [8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call