Abstract

Abstract New middle Miocene to Pliocene (~14–3 Ma) apatite fission track (AFT) cooling ages combined with published K–Ar/Ar–Ar and zircon fission track (ZFT) ages from the Hazara and Swat regions of Pakistan are used to explain the Oligocene to Pliocene structural evolution in the Western Himalaya. The structural model explains the distribution of K–Ar/Ar–Ar ages in three distinct age groups (Proterozoic, Paleozoic-Mesozoic, and Eocene to Oligocene). The Proterozoic to Mesozoic sequence of northern Hazara and Swat experienced elevated temperature and pressure conditions, evident by reset Eocene to Oligocene K–Ar/Ar–Ar hornblende and Eocene to Miocene muscovite ages, caused by Kohistan overthrusting the Indian margin during and after the India–Asia collision. Samples from the Indus syntaxis with Paleo to Mesoproterozoic K–Ar/Ar–Ar hornblende ages and Eocene to Oligocene Ar–Ar muscovite ages show no signs of Cenozoic metamorphism; these samples were thermally imprinted up to the Ar–Ar muscovite closure temperature. Neoproterozoic to Lower Paleozoic rocks from the southern parts of Hazara and Swat show Mesozoic to Oligocene partially reset Ar–Ar muscovite ages and preservation of Ordovician metamorphism. The combined analysis of published K–Ar/Ar–Ar (muscovite), ZFT, and new AFT ages (~14–12 Ma) suggests that the Main Central thrust/Panjal thrust was active from Oligocene to early Miocene (~30–18 Ma), and the Nathia-Gali and Main Boundary thrusts were active from the middle to late Miocene (~14–9 Ma) in the Hazara area. New and published AFT ages (~6–3 Ma) from the Indus syntaxis suggest that early Pliocene tectonic thickening in the hinterland formed the N–S trending Indus anticline, creating an erosional half window in the Main Mantle thrust, forming the Indus syntaxis, and dividing the Main Central thrust sheet into the Hazara and Swat segments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call