Abstract
More and more evidence indicates that the onset of the East Asian (EA) monsoon can be traced back to the Oligocene–Miocene boundary (at about 23 Ma). However, the process of its evolution is still less well-known until now. Here we investigate its late Neogene evolution by analyzing a terrestrial mollusk sequence, from the Chinese Loess Plateau (CLP), covering the period between 7.1 and 3.5 Ma. Considering the modern ecological requirements of these organisms, we were able to define two groups of cold-aridiphilous (CA) and thermo-humidiphilous (TH) species, representing the EA winter and summer monsoon variations, respectively, as previously defined in the Quaternary glacial–interglacial cycles. Variations in these two groups indicate two different monsoon dominated periods during 7.1–3.5 Ma. First, between 7.1 and 5.5 Ma, the EA winter monsoon, with a 100-kyr periodicity, was dominant. Second, between 5.1 and 4 Ma, the EA summer monsoon dominated, with a 41-kyr periodicity. Furthermore, our mollusk record yields valuable evidence for a late Miocene–Pliocene transition of about 400 kyr from winter monsoon dominated towards summer monsoon dominated, associated with a periodicity transition from weak 100 kyr to 41 kyr. The strengthened winter monsoon interval, with a 100-kyr periodicity, is coeval with orbital-scale global ice-volume changes, in conjunction with the uplift of the Tibetan Plateau which probably reinforced the winter monsoon sub-regime. Conversely, closures of the Panama and Indonesian seaways, associated with changes in obliquity between 5.1 and 4 Ma, are probably major forcing factors for the observed dominant summer monsoon with 41-kyr frequency, favoring heat and moisture transports between low and high latitudes to allow TH mollusks to grow and develop in the CLP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.