Abstract

Abstract: Hydrothermal systems related to magmatic intrusions in the Jozankei‐Zenibako district, southwest Hokkaido are examined, based on field observations, K‐Ar ages, and alteration mineral assemblages. The study reveals five major magmat–ic–hydrothermal systems of Late Miocene in age, comprising Ogawa (9. 7 Ma), Jozankei (9. 5–9. 0 Ma), Otarunaigawa (8. 7 Ma), Asarigawa (8. 8 and 6. 7 Ma) and Hariusu (6. 7 Ma). The Ogawa system is related to granodiorite, and the Jozankei, Otarunaigawa and Asarigawa systems are related to quartz porphyry.The Ogawa system includes potassic, sericitic, propylitic and advanced argillic alteration as well as base‐metal mineralization, represented by the Toyotomi deposit. The Jozankei and Otarunaigawa systems lack significant potassic alteration, and are accompanied by sericitic and propylitic alteration. The Otarunaigawa system is associated with base‐metal mineralization at Toyohiro and Inatoyo. The Asarigawa and Hariusu systems include advanced argillic and argillic alteration, as well as iron sulfide deposits. The presence of potassic alteration only in the Ogawa system is ascribed to deeper emplacement (˜3 km from the surface) of the intrusive magma. These systems formed in terrestrial environments that existed from ca. 11 Ma to 8. 5 Ma and after 7. 5 Ma in the district.Age–data compilation shows that the major advanced argillic alteration events in southwest Hokkaido, including those in the Jozankei‐Zenibako district, formed during the periods from 9. 7–6. 5 Ma and 3. 5–1. 5 Ma. These periods correspond to the timing of normal subduction of the Pacific plate beneath the Northeast Japan arc. Normal, in contrast to oblique, plate subduction is characterized by andesitic, polygenetic volcanism and associated advanced argillic alteration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call