Abstract

A typical slab melt association was emplaced from 11 to 8 Ma in the Santa Clara volcanic field, Vizcaino Peninsula, Baja California Sur. It includes adakitic domes and associated pyroclastic flow deposits, together with lava flows of niobium-enriched basalts. The trace element and isotopic (Sr-Nd-Pb) signatures of adakites are consistent with melting of altered mid-ocean ridge basalts, and the sources of the Nb-enriched basalts contain an enriched mantle wedge component. Such associations commonly form at depths of 70–80 km during low-dip subduction of very young oceanic crust. However, the Santa Clara field is relatively close (100 km) to the paleotrench, which suggests that the genesis of its adakites and Nb- enriched basalts occurred in a very high thermal regime linked to the subduction of the then-active Guadalupe spreading center of the East Pacific Rise. Our data suggest that the asthenospheric window documented below northern Baja California also developed beneath the south of the peninsula during the Neogene. This hypothesis is consistent with the spatial distribution and the ages of adakites and magnesian andesites from this region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.