Abstract

AbstractA database of 134 apatite fission track (AFT), and apatite and zircon (U–Th)/He analyses has been assembled for eastern Mexico. Most of these samples have reset ages and track lengths reflecting rapid cooling. Time–temperature histories were modelled for 99 localities, and were converted to depth using a constant gradient of 30°C km−1. Maps of these results reveal smooth temperature patterns in space and time, indicating that heating was due to regional burial rather than hydrothermal circulation. Cooling began by 90 Ma in the west and 50 Ma along the eastern edge of the Sierra Madre Oriental. These ages mimic the duration of the Mexican Orogeny, which verifies that most of these AFT ages have event significance. The elongate Mayrán Basin, a part of the Mexican foreland basin system, formed and grew across and above the eastern toe of the active Sierra Madre Oriental. This basin subsided between at least 70 and c. 40 Ma, and reached a minimum depth of 6 km. It was a both a catchment and routing system for sediment from US and Mexican sources. The shape of the basin suggests that early outflow was directed through the Burgos Basin into the Gulf of Mexico (GoM). By 50 Ma, some outflow potentially routed southwards through the Tampico Misantla Basin area. The Mayrán Basin subsided until 40 Ma, and then began to uplift and erode. This inversion mobilized the stored sediment and redeposited it into the GoM, filling the offshore Bravo Trough. Volcanism swept eastwards between 90 and 40 Ma, driven by northeastward-directed flat-slab subduction, which may also have driven the contraction. Local subsidence during contraction suggests there was dynamic pull-down created by the underriding flat slab. Subsidence ceased at c. 40 Ma, as volcanism swept back westward and asthenosphere replaced the flat slab. The crust rebounded, creating an ensuing period of massive erosion which peaked around 20 Ma. Southern Mexico was relatively quiet until rapid uplift began in Oaxaca in late Oligocene–early Miocene time. Uplift progressed eastwards to the Chiapas Massif in the late Miocene, commensurate with the eastward translation of the Chortis Block.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call