Abstract

Summary. Palaeomagnetic results from Part I of this study and their analysis in Part II are combined to eliminate bias from the Cenozoic apparent polar wander path for Australia – a bias due to non-dipole components in past geomagnetic fields or, for poles calculated from hot-spot data, due to the motion of hot spots relative to the Earth's rotational axis. This path is extended in approximately bias-free form to the late Mesozoic, and indicates a significant change in the drift direction of the continent between 26 and about 60 Ma. The bias-corrected Australian path is used, first, with seafloor spreading data for the Southern Ocean to derive a corresponding late Mesozoic–Cenozoic pole path for Antarctica. The latter shows that the Antarctic drift direction reversed in the early Tertiary. It is suggested that the early Tertiary directional changes of both Australia and Antarctica are part of a global reorganization of plates during the Eocene, postulated by Rona & Richardson, Cande & Mutter and Patriat & Achache. Next, the Australian path is compared with hot-spot data from the African and Australian plates, indicating a movement of the hot spots relative the Earth's rotational axis during the Cenozoic. The direction of this movement is found to be consistent with previous results from other parts of the world. Finally, the Australian path is used together with non-dipole components in the geomagnetic field to explain a prominent westward displacement of the mid- and late Cenozoic poles of India relative to those of Australia. Because of uncertainties in the original poles and in the analysis, the present results are likely to contain appreciable errors. Nevertheless, their consistency with independent findings supports the dipole-quadrupole model of Part II for mid- and late Cenozoic geomagnetic fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call