Abstract
The paper tackles the problems connected with the charge exchange in internal combustion engines. The theoretical analysis of the charge exchange process in the SI engine has been presented. The realization of the charge exchange process is connected with the necessity of overcoming the flow resistances, then with the necessity of doing a work, so-called the charge exchange work. The flow resistance caused by throttling valve is especially high at the partial load running of an engine. A system with independent, late intake valve closing has been analysed. The use of the analysed system to governing of an engine load will enable to eliminate a throttling valve from inlet system and reduce the charge exchange work, especially within the range of partial load. The decrease of the charge exchange work leads to an increase of the internal and effective works, which results in an increase of the effective efficiency of the spark ignition engine. The open, theoretical Atkinson-Miller cycle has been assumed as a model of processes proceeding in the engine with variable intake valve actuation. The system has been analysed individually and comparatively with open Seiliger-Sabathe cycle, which is theoretical cycle for the classic throttle governing of engine load. Benefits resulting from application of the system with late intake valve closing have been assessed on the basis of the selected parameters: a fuel dose, a cycle work, relative charge exchange work and cycle efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.