Abstract
Radiation-induced heart disease represents a late complication of thoracic radiotherapy. We investigated the inflammatory and thrombotic response after local heart irradiation in wild-type and atherosclerosis-prone mice. Atherosclerosis-prone ApoE(-/-) and C57BL/6 wild-type mice were sacrificed 20, 40, and 60 weeks after irradiation with 0.2, 2, 8, or 16 Gy. The expression of CD31, vascular cell adhesion molecule-1 (VCAM-1), thrombomodulin (TM), and CD45 were quantified by immunofluorescence staining of heart tissue sections. Microvascular density decreased at 40 weeks after 16 Gy in C57BL/6 but not in ApoE(-/-) mice. CD31 expression declined in C57BL/6 mice at 40 weeks (8 Gy), but increased in ApoE(-/-) mice at 20 (2/8/16 Gy) and 60 weeks (16 Gy). Capillary area decreased in C57BL/6 at 40 weeks (8/16 Gy) but increased in ApoE(-/-) mice at 20 weeks (16 Gy). Endocardial VCAM-1 expression remained unchanged. TM-positive capillaries decreased at 40 weeks (8/16 Gy) in C57BL/6 and at 60 weeks (2/16 Gy) in ApoE(-/-) mice. Leukocyte infiltration transiently rose 40 weeks after 8 Gy (only ApoE(-/-)) and 16 Gy. After receiving a low irradiation dose of 0.2 Gy, no significant changes were observed in any of the mouse models. This study demonstrated that local heart irradiation affects microvascular structure and induces inflammatory/thrombotic responses in mice in a dose- and time-dependent manner. Thereby, significant prothrombotic changes were found in both strains, although they were progressive in ApoE(-/-) mice only. Proinflammatory responses, like the increase of adhesion molecules and leukocyte infiltration, were more pronounced and occurred at lower doses in ApoE(-/-) vs. C57BL/6 mice. These findings indicate that metabolic risk factors, such as decreased ApoE lipoproteins, may lead to an enhanced proinflammatory and prothrombotic late response in locally irradiated hearts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.