Abstract

The semi-arid Amboseli landscape, southern Kenya, is characterised by intermittent groundwater-fed wetlands that form sedimentary geoarchives recording past ecosystem changes. We present a 5000-year environmental history of a radiocarbon dated sediment core from Esambu Swamp adjacent to Amboseli National Park. Although radiocarbon dates suggest an unconformity or sedimentary gap that spans between 3800 and 500 cal year BP, the record provides a unique insight into the long-term ecosystem history and wetland processes, particularly the past 500 years. Climatic shifts, fire activity and recent anthropogenic activity drive changes in ecosystem composition. Prior to 3800 cal year BP the pollen data suggest semi-arid savanna ecosystem persisted near the wetland. The wetland transgressed at some time between 3800 and 500 cal year BP and it is difficult to constrain this timing further, and palustrine peaty sediments have accumulated since 400 cal year BP. Increased abundance of Afromontane forest taxa from adjacent highlands of Kilimanjaro and the Chyulu Hills and local arboreal taxa reflect changes in regional moisture budgets. Particularly transformative changes occurred in the last five centuries, associated with increased local biomass burning coeval with the arrival of Maa-speaking pastoralists and intensification of the ivory trade. Cereal crops occurred consistently from around 300 cal year BP, indicative of further anthropogenic activity. The study provides unique insight in Amboseli ecosystem history and the link between ecosystem drivers of change. Such long-term perspectives are crucial for future climate change and associated livelihood impacts, so that suitable responses to ensure sustainable management practices can be developed in an important conservation landscape.

Highlights

  • Rapid ecosystem changes, during the recent past, are primarily attributed to anthropogenic modifications that are superimposed on long-term climatic and landscape-scale changes (Young 2014)

  • Pollen and spore assemblage zones were each identified through constrained hierarchical cluster analysis (CONISS) with the zones being tested for significance using a broken stick test of the sum of squares above the default cut-off implemented with R scripts (R Development Core Team 2015)

  • Pollen taxa were grouped into Afromontane, trees, shrubs, herbs, grasses and aquatics according to their dominant structure at the taxonomic resolution possible through pollen analysis (Table S1)

Read more

Summary

Introduction

During the recent past, are primarily attributed to anthropogenic modifications that are superimposed on long-term climatic and landscape-scale changes (Young 2014). East African savannas support large human (Lane 2013) and herbivore (Sarkar 2006) populations and are currently undergoing rapid development and pressure on water resources (Bond and Midgley 2000; Thenya 2001). These changes are leading to wildlife habitat degradation and fragmentation (Moses et al 2016), biodiversity loss (Western and Maitumo 2004; Muchiru et al 2009), and other stressors surrounding the community conservation nexus.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call