Abstract

Fluvial lowlands have become attractive human settling areas all around the world over the last few millennia. Because rivers kept changing their course and networks due to avulsion, the sedimentary sequences in these areas are archives of both fluvial geomorphological and archaeological development. We integrated geological and archaeological datasets to demonstrate the concurrence of the gradual abandonment of a major Rhine channel (Utrecht, The Netherlands), the development of human habitation in the area, and the interactions between them.The Utrecht case study highlights the stage-wise abandonment of a natural river channel, due to avulsion, coincident with intensifying human occupation in Roman and Early Medieval times (1st millennium AD). The analyses make maximum use of very rich data sets available for the study area and the tight age control that the geo-archaeological dataset facilitates, offering extra means of time-control to document the pacing of the abandonment process. This allows us to quantify change in river dimensions and meander style and to provide discharge estimates for successive stages of the abandonment phase over a 1000-year period of abandonment succession, from mature river to eventual Late Medieval overbuilt canal when the Rhine branch had lost even more discharge.Continued geomorphic development during this period - which includes the 'Dark Ages' (450-1000 AD) - appears to have been crucial in the development of Utrecht from Roman army fortress to Medieval ecclesial centre. The settlement dynamics in and around the city of Utrecht changed during the various phases of abandonment. In the bifurcating network of river branches forming the Rhine-Meuse delta, the main Rhine branch hosted the Roman limes military border and transport route. The Rhine- Vecht bifurcation at Utrecht provided an excellent location to raise a Roman fort. Continued geomorphic activity during abandonment in Early Medieval times was characterised by enhanced overbank sedimentation and shifts in the position of bifurcations. River flooding became more incidental in this stage, and alluvial-ridge occupancy became sensitive to flooding events for several centuries. We conclude by demonstrating that similar human-river interactions during Roman times occurred in several other deltas within the former Roman empire, with differences depending on the position of a settlement within the delta, the overall hydrological situation, and the ability of societies to control the changing environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call