Abstract

Glaciers on the Tibetan Plateau (TP) are reliable water sources for Asia. Continuously high-resolution and high-accuracy long-term glacier fluctuations have been examined to improve the reliability of predictions regarding future TP glacier behavior under global climate change. In this study, we analyzed physiochemical parameters in typical glaciolacustrine sediments to reconstruct multidecadal activities of the monsoonal Qiangyong Glacier over the past ~2500 years. The results show that the glacier advanced most strongly during 560 BC–AD 100, followed by AD 1050–1850 and AD 600–850. It retreated most severely during AD 1850–present, followed by AD 100–600 and AD 850–1050. This continuous record corresponds well with changes in the temperature and regional precipitation before the Current Warm Period, exhibiting “warm-humid-retreat” and “cold-dry-advance” patterns. This indicates that temperature changes, rather than precipitation variations, control the monsoonal glaciers at the southern TP at multidecadal to centennial scales. As global warming continues, although the precipitation on the southern TP is projected to increase, the mass loss of TP monsoonal glaciers is expected to continue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call