Abstract

Planktonic foraminiferal Mg/Ca ratios and oxygen isotopic compositions of a spliced sediment record from Feni Drift, NE Atlantic Ocean (box core M200309 and piston core ENAM9606) trace late Holocene sea surface temperature (SST) and salinity changes over the past 2400 years. At this location, the variability of SST and oxygen isotopic composition of seawater (δ18Ow) reflects variable northward advection of warm and saline surface waters, which appears linked to climate variability over the adjacent European continent. Our records reveal a general long-term cooling trend. Superimposed on this overall trend, partly higher temperatures and salinities from 180 to 560 AD and 750 to 1160 AD may be ascribed to the Roman and Medieval Warm Periods, respectively. Subsequently, our record displays highly variable surface water conditions; the main Little Ice Age SST minimum is restricted to the 15th and 16th centuries AD. Pervasive multidecadal- to centennial-scale variability throughout the sedimentary proxy records can be partly attributed to solar forcing and/or variable heat extraction from the surface ocean caused by shifts in the prevailing state of the North Atlantic Oscillation (NAO). High salinities in the 17th and 18th centuries are considered to reflect tropical anomalies linked to a southward shift of the Intertropical Convergence Zone, propagating across the North Atlantic Ocean.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call