Abstract

using a resolution 1000-fold higher than prior studies, we studied (1) the degree to which late gadolinium-enhancement (LGE) cardiac magnetic resonance tracks fibrosis from chronic myocardial infarction and (2) the relationship between intermediate signal intensity and partial volume averaging at distinct "smooth" infarct borders versus disorganized mixtures of fibrosis and viable cardiomyocytes. sprague-Dawley rats underwent myocardial infarction by coronary ligation. Two months later, rats were euthanized 10 minutes after administration of 0.3 mmol/kg intravenous gadolinium. LGE images ex vivo at 7 T with a 3D gradient echo sequence with 50×50×50 μm voxels were compared with histological sections (Masson trichrome). Planimetered histological and LGE regions of fibrosis correlated well (y=1.01x-0.01; R(2)=0.96; P<0.001). In addition, LGE images routinely detected clefts of viable cardiomyocytes 2 to 4 cells thick that separated bands of fibrous tissue. Although LGE clearly detected disorganized mixtures of fibrosis and viable cardiomyocytes characterized by intermediate signal intensity voxels, the percentage of apparent intermediate signal intensity myocardium increased significantly (P<0.01) when image resolution was degraded to resemble clinical resolution consistent with significant partial volume averaging. these data provide important validation of LGE at nearly the cellular level for detection of fibrosis after myocardial infarction. Although LGE can detect heterogeneous patches of fibrosis and viable cardiomyocytes as patches of intermediate signal intensity, the percentage of intermediate signal intensity voxels is resolution dependent. Thus, at clinical resolutions, distinguishing the peri-infarct border zone from partial volume averaging with LGE is challenging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.