Abstract

Human adults flawlessly and effortlessly navigate boundaries and obstacles in the immediately visible environment, a process we refer to as guided navigation. Neuroimaging work in adults suggests this ability involves the occipital place area (OPA) [1, 2]-a scene-selective region in the dorsal stream that selectively represents information necessary for visually guided navigation [3-9]. Despite progress in understanding the neural basis of visually guided navigation, however, little is known about how this system develops. Is navigationally relevant information processing present in the first few years of life? Or does this information processing only develop after many years of experience? Although a handful of studies have found selective responses to scenes (relative to objects) in OPA in childhood [10-13], no study has explored how more specific navigationally relevant information processing emerges in this region. Here, we do just that by measuring OPA responses to first-person perspective motion information-a proxy for the visual experience of actually navigating the immediate environment-using fMRI in 5- and 8-year-old children. We found that, although OPA already responded more to scenes than objects by age 5, responses to first-person perspective motion were not yet detectable at this same age and rather only emerged by age 8. This protracted development was specific to first-person perspective motion through scenes, not motion on faces or objects, and was not found in other scene-selective regions (the parahippocampal place area or retrosplenial complex) or a motion-selective region (MT). These findings therefore suggest that navigationally relevant information processing in OPA undergoes prolonged development across childhood.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call