Abstract

The Late Cretaceous history of the northern Pacific Ocean has not been adequately deciphered, largely because a major plate reorganization occurred during the Cretaceous magnetic quiet interval. Using primary data to reconstruct plate motions from fracture zone trends and Late Cretaceous seafloor spreading magnetic anomalies allows formulation of a reasonable sequence of events that accounts for all the geologic features of that region, especially the Emperor and Chinook troughs. The primary event in our reconstruction is the subduction of the old northwest Pacific triple junction. New relative plate motions imposed by formation of convergent boundaries along both the northern Pacific and Farallon plates caused the Farallon plate to crack. This subdivision occurred 82 m.y. ago and resulted in the formation of the Kula and Chinook plates. The Chinook plate was bounded on the north by the Chinook-Kula ridge, the western arm of the Great Magnetic Bight, on the west by the southern Emperor trough, a slowly spreading rift valley, on the south by the Mendocino transform, and on the east by the Chinook-Farallon ridge. The northern Emperor trough formed the initial western boundary of the Kula plate. From 82 m.y. ago to 50 m.y. ago this configuration was stable: the Chinook plate expanded, the Chinook-Kula ridge migrated north, and the Kula plate was subducted. With the subduction of this ridge, the Chinook plate adhered to the Pacific plate and the Pacific-Farallon ridge became the north-south-trending feature reflected by anomalies 22 and younger. This reconstruction obviates the awkward Late Cretaceous shifting of triple junctions found in other proposed histories and provides reasonable explanations for the several structural features of the region. To achieve closure of vector triangles representing the relative Late Cretaceous plate motions some extension must occur, presumably across the eastern Mendocino fracture zone, between the northern and southern portions of the Farallon plate. These two plates apparently were independent units between 105 and 50 m.y. ago; the initiation and cessation of rapid North Farallon-North American convergence 82 and 50 m.y. ago may have determined the nature and duration of the Laramide orogeny.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call