Abstract

The evolution of Andean volcanism including the formation of late Miocene to Recent collapse calderas on the Puna plateau is generally interpreted in terms of the kinematic framework of the Nazca and South American Plates. We present evidence that caldera dynamics and associated ignimbrite volcanism are genetically linked to the activity of first-order NW–SE-striking zones of left-lateral transtension on the local and regional scales. Consequently, ages of collapse calderas indicate activity of these fault zones which initiated at about 10 Ma on the Puna plateau. The onset of such faulting points to a change in the deformation regime from dominantly vertical thickening to orogen-parallel stretching upon reaching maximum crustal thickness and critical surface elevation. Horizontal magma sheets that formed at mid-crustal level possibly due to heat advection by volume increase of asthenospheric mantle below thickened crust were tapped by sub-vertical faults. This accounts well for the observed tectono-magmatic phenomena at surface. It follows that formation of collapse calderas and eruption of voluminous ignimbrites appear to be related to the mechanical evolution of the Andean plateau rather than to changes in the geometry of the Wadati–Benioff zone or plate boundary kinematics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call