Abstract

AbstractŚnieżnik Massif represents a prominent morphological feature in the East Sudetes, which is bounded by a system of faults controlling its differential uplift. Vertical movements originated at least during the Oligocene times, with culmination phase in Pliocene times, whereas estimated total uplift was in the range of 500-1000 meters. This study presents a qualitative (geomorphometric) and quantitative (morphotectonic) approach that combines Late Cenozoic tectonic uplift model with landscape evolution theories. Application of basin asymmetry factor (AF) and hypsometric integral (Hi) analyses allowed recognizing a NW trending tilted fault blocks. They originated as a result of Palaeogene planation surface braking and differential uplift. Uplift and later fault-block tilting in the Śnieżnik Massif morphotectonic unit, were generally realized along NE-SW striking Wilkanow fault to the west and WNW-ESE striking southern fault zone, as expressed here e.g. by Potoczek-Branna, Herˇmranice and Pisary faults.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call