Abstract

New 1 : 24,000 scale mapping, geochemical analyses of volcanic rocks, and Ar/Ar and tephrochronology analyses of the Wingate Wash, northern Owlshead Mountain and Southern Panamint Mountain region document a complex structural history constrained by syntectonic volcanism and sedimentation. In this study, the region is divided into five structural domains with distinct, but related, histories: (1) The southern Panamint domain is a structurally intact, gently south-tilted block dominated by a middle Miocene volcanic center recognized as localized hypabyssal intrusives surrounded by proximal facies pyroclastic rocks. This Miocene volcanic sequence is an unusual alkaline volcanic assemblage ranging from trachybasalt to rhyolite, but dominated by trachyandesite. The volcanic rocks are overlain in the southwestern Panamint Mountains by a younger (Late Miocene?) fanglomerate sequence. (2) An upper Wingate Wash domain is characterized by large areas of Quaternary cover and complex overprinting of older structure by Quaternary deformation. Quaternary structures record ∼N–S shortening concurrent with ∼E–W extension accommodated by systems of strike-slip and thrust faults. (3) A central Wingate Wash domain contains a complex structural history that is closely tied to the stratigraphic evolution. In this domain, a middle Miocene volcanic package contains two distinct assemblages; a lower sequence dominated by alkaline pyroclastic rocks similar to the southern Panamint sequence and an upper basaltic sequence of alkaline basalt and basanites. This volcanic sequence is in turn overlain by a coarse clastic sedimentary sequence that records the unroofing of adjacent ranges and development of ∼N–S trending, west-tilted fault blocks. We refer to this sedimentary sequence as the Lost Lake assemblage. (4) The lower Wingate Wash/northern Owlshead domain is characterized by a gently north-dipping stratigraphic sequence with an irregular unconformity at the base developed on granitic basement. The unconformity is locally overlain by channelized deposits of older Tertiary(?) red conglomerate, some of which predate the onset of extensive volcanism, but in most of the area is overlain by a moderately thick package of Middle Miocene trachybasalt, trachyandesitic, ash flows, lithic tuff, basaltic cinder, basanites, and dacitic pyroclastic, debris, and lahar flows with localized exposures of sedimentary rocks. The upper part of the Miocene stratigraphic sequence in this domain is comprised of coarse grained-clastic sediments that are apparently middle Miocene based on Ar/Ar dating of interbedded volcanic rocks. This sedimentary sequence, however, is lithologically indistinguishable from the structurally adjacent Late Miocene Lost Lake assemblage and a stratigraphically overlying Plio-Pleistocene alluvial fan; a relationship that handicaps tracing structures through this domain. This domain is also structurally complex and deformed by a series of northwest–southeast-striking, east-dipping, high-angle oblique, sinistral, normal faults that are cut by left-lateral strike-slip faults. The contact between the southern Panamint domain and the adjacent domains is a complex fault system that we interpret as a zone of Late Miocene distributed sinistral slip that is variably overprinted in different portions of the mapped area. The net sinistral slip across the Wingate Wash fault system is estimated at 7–9 km, based on offset of Proterozoic Crystal Springs Formation beneath the middle Miocene unconformity to as much as 15 km based on offset volcanic facies in Middle Miocene rocks. To the south of Wingate Wash, the northern Owlshead Mountains are also cut by a sinistral, northwest-dipping, oblique normal fault, (referred to as the Filtonny Fault) with significant slip that separates the Lower Wingate Wash and central Owlshead domains. The Filtonny Fault may represent a young conjugate fault to the dextral Southern Death Valley fault system and may be the northwest-dipping fault imaged by COCORP studies. Similarly, younger deformation in upper Wingate Wash is probably broadly related to distributed dextral shear along the Panamint Valley fault system. Earlier deformation (Late Miocene?) is more difficult to constrain because of overprinting but appears to be dominated by an E–W extension recognized by a NNW-striking, northeast-dipping, sinistral-oblique normal faults, ∼N–S striking normal faults that splay in the northern Owlshead Mountains and include the large west-tilted fault blocks of the northern Owlshead Mountains.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call