Abstract

In response to at least one change in the direction of sea-floor spreading, the Juan de Fuca Ridge and Gorda Rise have rotated approximately 20° clockwise with respect to geographic North during the last 10 million years. The rotation histories of these ridge segments have been determined from the ages and azimuths of linear magnetic anomalies within the corresponding “zed” patterns. In each case the rotations were systematic and occurred between about 9 and 3 Ma B.P. Significantly, the rotations occurred in a number of discrete stages during each of which the rates of rotation were approximately constant; rotation rates range from 1.3 to 8.6°/Ma. Though the rotation histories of these spreading centers are generally similar, some changes in the rotation rates are not synchronous, and until 3 Ma B.P., the Juan de Fuca Ridge had a 5–10° more easterly trend than the Gorda Rise. For the last 3 million years both ridge segments have had stable trends near 19°E of North. On a time scale of millions of years, ridge reorientation may be regarded as a continuous process wherein the rotation of the spreading center results from asymmetric spreading. Discontinuous changes in the degree of asymmetric spreading are required to account for observed changes in rotation rate. If the orthogonal arrangement of spreading centers and transform faults represents a least-work condition in which the resistance to plate motions is minimized by minimizing the lengths of ridge segments, as suggested previously, and if the rate at which the system seeks to reduce the total resistance after a change in spreading direction is maximum, it follows that the degree of asymmetric spreading, and hence the rate of rotation, are inversely proportional to the resistance to motion on transform faults. Thus, the various stages of rotation of the Juan de Fuca Ridge and Gorda Rise probably reflect different stress conditions on the Blanco Fracture Zone. It is difficult to account for the different trends of the Juan de Fuca Ridge and Gorda Rise largely because the Gorda Block is not behaving as a rigid plate and because the Mendocino Fracture Zone is not a transform fault. However, the fact that the Gorda Rise has had a stable trend for 3 million years, in spite of the deformation of an adjacent plate, suggests that the motion of the Gorda Block is not controlled by the motions of the vast Pacific and North American Plates, and that the Driving mechanism is “felt” directly at the ridge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.