Abstract
High-resolution geochemical analyses of organic-rich shale and carbonate through the 2500 million-year-old Mount McRae Shale in the Hamersley Basin of northwestern Australia record changes in both the oxidation state of the surface ocean and the atmospheric composition. The Mount McRae record of sulfur isotopes captures the widespread and possibly permanent activation of the oxidative sulfur cycle for perhaps the first time in Earth's history. The correlation of the time-series sulfur isotope signals in northwestern Australia with equivalent strata from South Africa suggests that changes in the exogenic sulfur cycle recorded in marine sediments were global in scope and were linked to atmospheric evolution. The data suggest that oxygenation of the surface ocean preceded pervasive and persistent atmospheric oxygenation by 50 million years or more.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.