Abstract
BackgroundReduction or elimination of vector populations will tend to reduce or eliminate transmission of vector-borne diseases. One potential method for environmentally-friendly, species-specific population control is the Sterile Insect Technique (SIT). SIT has not been widely used against insect disease vectors such as mosquitoes, in part because of various practical difficulties in rearing, sterilization and distribution. Additionally, vector populations with strong density-dependent effects will tend to be resistant to SIT-based control as the population-reducing effect of induced sterility will tend to be offset by reduced density-dependent mortality.ResultsWe investigated by mathematical modeling the effect of manipulating the stage of development at which death occurs (lethal phase) in an SIT program against a density-dependence-limited insect population. We found late-acting lethality to be considerably more effective than early-acting lethality. No such strains of a vector insect have been described, so as a proof-of-principle we constructed a strain of the principal vector of the dengue and yellow fever viruses, Aedes (Stegomyia) aegypti, with the necessary properties of dominant, repressible, highly penetrant, late-acting lethality.ConclusionConventional SIT induces early-acting (embryonic) lethality, but genetic methods potentially allow the lethal phase to be tailored to the program. For insects with strong density-dependence, we show that lethality after the density-dependent phase would be a considerable improvement over conventional methods. For density-dependent parameters estimated from field data for Aedes aegypti, the critical release ratio for population elimination is modeled to be 27% to 540% greater for early-acting rather than late-acting lethality. Our success in developing a mosquito strain with the key features that the modeling indicated were desirable demonstrates the feasibility of this approach for improved SIT for disease control.
Highlights
Reduction or elimination of vector populations will tend to reduce or eliminate transmission of vector-borne diseases
In a RIDL program using a strain with a late lethal phase, "doomed" heterozygotes would compete for resources as larvae and so tend to reduce the survival of their con-specifics
We found no difference in the survival of LA513A/+ transgenics and their wild type siblings when reared in the presence of 30 μg/ml tetracycline, but in the absence of tetracycline only 3–4% of the transgenics survived from the first larval instar to adulthood, compared with 86– 88% of wild type, a 95–97% reduction in survival relative
Summary
Reduction or elimination of vector populations will tend to reduce or eliminate transmission of vector-borne diseases. One potential method for environmentally-friendly, species-specific population control is the Sterile Insect Technique (SIT). SIT has not been widely used against insect disease vectors such as mosquitoes, in part because of various practical difficulties in rearing, sterilization and distribution. The Sterile Insect Technique (SIT) is a species-specific and environmentally benign method for insect population control that relies on the mass-rearing and release of sterile insects [2,3,4]. These released insects compete for mates with wild males; a wild female mating with a released sterile male has no or fewer progeny, so the population tends to decline. SIT has been used successfully for over 50 years for area-wide control and/or elimination of several important agricultural pests and disease vectors, including the Mediterranean fruit fly [5], the screwworm fly [6,7] and the tsetse fly [8]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.